Hyperstability of a mixed type cubic-quartic functional equation in ultrametric spaces
نویسندگان
چکیده
منابع مشابه
Generalized hyperstability of the cubic functional equation in ultrametric spaces
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.
متن کاملSolution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces
and Applied Analysis 3 vector spaces X and Y is a solution of 1.5 if and only if there exists a unique function C : X × X × X → Y such that f x C x, x, x for all x ∈ X, and C is symmetric for each fixed one variable and is additive for fixed two variables see also 20 . The quartic functional equation 1.6 was introduced by Rassias 21 in 2000 and then in 2005 was employed by Park and Bae 22 and o...
متن کاملCubic-Quartic Functional Equation
and Applied Analysis 3 In 2008, Gordji et al. 17 provided the solution as well as the stability of a mixed type cubic-quartic functional equation. We only mention here the papers 19, 32, 33 concerning the stability of the mixed type functional equations. In this paper, we deal with the following general cubic-quartic functional equation: f ( x ky ) f ( x − ky) k2(f(x y) f(x − y)) 2 ( 1 − k2 ) f...
متن کاملCubic-quartic functional equations in fuzzy normed spaces
In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation
متن کاملStability of a Mixed Type Cubic and Quartic Functional Equation in non-Archimedean l-Fuzzy Normed Spaces
In this paper, we prove the generalized Hyres–Ulam–Rassias stability of the mixed type cubic and quartic functional equation f (x + 2y) + f (x − 2y) = 4(f (x + y) + f (x − y)) − 24f (y) − 6f (x) + 3f (2y) in non-Archimedean ℓ-fuzzy normed spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Classical Analysis
سال: 2019
ISSN: 1848-5987
DOI: 10.7153/jca-2019-14-09